
1 Swedish to You is like Greek to Me

Swedish to You is like Greek to Me
by Jon Wätte
h+@nada.kth.se

Abstract:
Reaching a global audience is good, both for your ego and your wallet. However, properly
taking care of customers outside your own country requires some thought. Here is a
summary of some of the more important issues. The focus is on how to resolve these issues
in applications running under the Mac OS.

Going the international route doesn’t mean
a lot of work, it just means re-learning
(which is worse is a matter of personal
opinion.) Generally speaking, building an
application that in itself is world-savvy is
the right thing to do; calling the toolbox for
comparing strings and finding word breaks
builds a very strong foundation. Separating
strings and icons so they can be translated
into other languages is just the icing on the
cake.

Below, I will repeatedly make references to “the US”
and “Sweden” — you can substitute “the developer’s
native country” and “the localization target country”
if you wish. The impact remains the same.

To Market!
If you know you’re interested in a particular country,
you should look over your sales organization. Do you
have any contacts in the new country? Do you know
the market structure, how to price your product, and
how to support it?

If you’re part of a larger company, chances are you
do. If not, this is the time to start looking for a
business partner in the country. Reading trade
magazines from the country in question is a good
way, if you understand the language. Otherwise you
can look in the yellow pages for the larger cities, or
maybe ask someone you do know (Apple Computer,
for instance) I’ve found that a smaller independent
company with a track record of several years in the
business often makes for the best partner; larger
corporations usually have too rigid structures and
are less willing to adapt to your way of working.

If you’re daring, you may want to start your own
subsidiary in the new country (or maybe have it
serve a whole region) but the scope of this paper
does not cover that process. Suffice to say that it
requires lawyers, even if the climate abroad isn’t as
lawsuit happy as in the US. (In Sweden, suing
someone is one of the worst insults you can imagine,
no matter who wins.)

Another problem is the number of foreign countries
you will have to cover. You can’t serve “Europe”
using one or two offices, since it’s a region
consisting of some twenty countries, with as many
languages and cultures, and calling from one
European country to another is expensive for the
customer — using the equivalent of 800 numbers
may help, but it’s expensive for you.

Other issues to consider are cultural issues and the
way people work — for instance, newspapers are
planned and made differently in different countries.
If you do not have area knowledge of the market
you’re trying to sell into, you have to have a
business partner who does. Even if you plan on
starting your own subsidiary in the end, hiring a
professional localizer is necessary; preferably one
with knowledge of the particular area your
application focuses on. Again, trade press, or
contacts already in the country, will help. You can
also check out the Macintosh Services Directory.

The product
Apart from marketing, selling and supporting the
product (which you can hand over to the natives)
you should start working on your application. It
needs to be localized, together with the manuals,

1 Swedish to You is like Greek to Me

2 Swedish to You is like Greek to Me
packaging, and all other material relating to it.
“Localization” here refers to the entire concept, not
just translation (which is only part of localization,
and actually not as important as you may think) My
view is that support and manuals should go first,
then packaging and sales, and last the actual
application (provided the non-translated application
still works in the new country.) One obvious reason
why it’s seldom done this way, is because you’ll need
screen

2 Swedish to You is like Greek to Me

3 Swedish to You is like Greek to Me
dumps for the manuals, and usually don’t want to
document an application with display in another
language than the documentation.

Perhaps the main issue is: will this product sell
abroad? Some products, like tax programs or
accounting, need substantial localization before they
work abroad. Others, like cheque-writing programs,
probably won’t sell no matter how much you try.
(Bills are paid through a streamlined bank transfer
system, not through mailed cheques in many parts of
the world)

Another thing that varies are keyboard layouts (how
many times have you written “option-8” when you
mean “bullet character”? Well, for me, option-q
means “bullet character”.) Keyboard layouts also
come into effect when menu shortcuts (command
keys) are used, and as dead keys (The US keymap
says option-u means add diaresis to the next
character, while the Swedish keyboard has a specific
key for that purpose, as well as having the letter ä
on a key of its own) Also, assume that most non-
alphabet characters (including numbers!) can be
hard to get at; \ is option-shift-7 on a Swedish
keyboard (and there’s nothing on the key saying it is
so).

Also beware of different ways of writing addresses
and telephone numbers. How many digits in a
telephone number? This may vary within one area
code! Stockholm (area code 8 in Sweden) has
numbers from 5 to 8 digits long. Other parts can
have 4-digit area codes and still have both 5 and 6
digit numbers. How many digits in area codes?
Again, this may vary. How are area codes marked?
In some countries, it is put in parentheses. In others,
it’s followed by a dash. Still others use a slash, or
just let the placement as the first group show its
status. Some countries do not have area codes.
Address registers should not assume a City-Zip-State
field format; in Sweden you write Zip-City, and the
British have a format with several cities as well as
two zip codes.

So how do you know your localizer did a good job on
your application? Some people just do not know how
to spell, but still work in journalism or publishing.
An impressive portfolio is not enough, unless it also
mentions what users think o the results. You could

enlist local user groups or trade mags (under non-
disclosure) to help you find those last wrinkles.
Local colleges or other institutes may also help. If
you’re completely lost, try talking to a trade &
commerce representative at the nation’s embassy.

Another problem is a matter of style; if you add
jokes in the US version that you think are in taste in
English, anything could happen in the localized
version. The joke could disappear; it could be
translated literally (which probably isn’t such a
great idea) or the localizer’s favourite native joke
could be substituted (be sure to look for “good sense
of humour” on his resume…) Adopting a slightly
formal and conservative attitude in your application
from the beginning usually works best and gives you
the least surprises, especially if you get the message
across to the localizer (if he’s an easygoing type,
stress formality, if he’s a stout person, try to lighten
it up.)

First stop Europe
For several reasons, Europe is among the first
foreign markets to consider. However, it is essential
to know that Europe is not as homogenous as the
US; it’s a veritable mess of countries, languages and
cultures. Selling into Great Britain would seem a
logical first step for a US software author, since the
language is very similar, but the culture isn’t the
same, and for the best results, you have to localize
for British English as well.

However, many things make localizing for western
Europe easy:

• Most languages uses the Roman script system
• Those that don’t, still use one-byte scripts
• Business practices have common ground with the

US.
• The infrastructure is in place; you can find

suitable business partners.

The main issues here are to separate text strings for
easy translation, document how string concatenation
is done so the localizer has a fighting chance of
making sense of constructed messages, use the
correct date, time and currency symbols, sort in the
right order, and design screen layouts so there is
space for the translated text.

3 Swedish to You is like Greek to Me

4 Swedish to You is like Greek to Me
Fortunately, on the Macintosh, this is easy, since
many of these functions have been available since
System 1.0, and the rest came in with System 4.2.
Putting strings in resources instead of literals might
require some

4 Swedish to You is like Greek to Me

5 Swedish to You is like Greek to Me
forethought, but is not that hard to do right from the
beginning (if you haven’t, a tool for you will be
presented below)

Documenting string concatenation is a little harder,
but again, if you though about it from the beginning,
it’s much easier to do. An example of this is the
common error dialog “Could not complete the last
command, because ” which will the be concatenated
with an appropriate error code string, such as “there
is not enough memory.” or “a required resource is
missing.” or “an error of type -35 occurred.”

However, when translating these messages, it might
be impossible to make them sound natural in the
target language. Some foresight, again, will save the
day. The main trick here is adding flexibility by
concatenating empty strings; instead of just having
the string “Could not…” and the error string, you
should concatenate the string “Could not…” with the
error message and then with a specific, unique
empty string. This will let the localizer add any
necessary trailer phrase, without adding it to every
error message string. Best of all, however, is
designing so you do not have to concatenate strings.
Users of sprintf() beware!

On a tangential point, usage of signed chars for
strings is another pitfall, since most character codes
are defined on the range 0–255, not -128–+127.
Similarly, it is not prudent to check if characters are
< 32 (space) to check for control characters if you
use signed chars. Make it a habit to always use
unsigned chars for string data.

Getting date and time and currency formats right is
a special case of concatenating strings; however,
these are handled by calls in the Mac OS part called
the International Utilities. Here, you need to throw
your prejudices aside: you’ll have to assume that the
OS is written in the most efficient manner possible,
and that you can’t do any better yourself, else you
will start running into problems down the line.
Localization is very much an “all or nothing”
process; users perceive a badly localized product as
worse than one that is not localized at all.

Set the Font
It is important that a valid (and preferably current)
font is set in the currently active GrafPort (which

also should be valid) since the International Utilities
and Script Manager use this information to find out
what script, language and region you’re looking at
right now.

Use the built-in functions IUDateString and
IUTimeString for date and time. Use IUGetIntl(0) to
access a handle specifying how you should format
currency information. Use IUGetIntl(1) to get a list
of day and month names, as well as information on
how IUDateString and IUTimeString behave.

Is your program metric? If it assumes any particular
measurement system, it cuts itself out from large
parts of the world. However, the metric system is an
accepted world standard, and you can promote
reason by not supporting any other measurement
system. Meters, Newton and litres fit much better
together than furlongs and footlamberts.

Finding word breaks is a little harder; you can’t
assume you know what characters are considered
letters and which are not. Easiest is to use
FindWord() with a break table of NULL (for word
selection) or -1 (for word wrapping) This comes into
play when you add functionality to TextEdit fields for
next-word and previous-word movement, as well as
when you parse input from users.

Scripting
Many applications have their own script language.
However, the grammar and structure of natural
languages wary wildly; in German you put all verbs
except one at the end of a sentence, while in
Japanese you toss them into a jar, shake, and see
what comes out… (OK, so I’m a little prejudiced
myself!)

Not only do you have to consider token order, you
also have to consider token recognition. Probably
the best thing would be to keep a list of tokens in a
STR# list, and hash them when the application
starts up. Then use FindWord to tokenize your
script.

If you want case insensitivity, you will have to call
LwrString and UprString, or maybe Transliterate,
before hashing. This also goes for specific lower-
case and upper-case functions. You can most
definitely NOT trust the sixth bit of a byte to have

5 Swedish to You is like Greek to Me

6 Swedish to You is like Greek to Me
any significance on case!

6 Swedish to You is like Greek to Me

7 Swedish to You is like Greek to Me
For string comparisons, use IUCompString. Even if
sorting is a major part of your application, and you
think you lose some performance by calling an A-
trap, you should use IUCompString, since you will
lose even more customers when your application
doesn’t sort right. As an example, in Swedish you
would sort é with e, ü with y while å, ä and ö are
completely separate letters of their own, sorted at
the end of the alphabet. (No, there is no law saying
the alphabet should only have 26 characters!)

Abcdefghijklmnopqrstuvwxyzåäö

The Swedish alphabet

Displaying numbers is equally perilous; some
countries use thousands separators, others use a
comma for decimals, still others do not print the 0 in
fractions less than one. Luckily, there are calls to the
Macintosh OS for this purpose, too; FormatX2Str()
converts a floating-point extended value to a string
according to a format that you can store as a string
and compile at program start-up using Str2Format().

Graphics
Not all icons are as natural as you may think; in the
US, a check mark is used to indicate something as
“checked” or “OK,” while in Sweden it’s the most
feared of marks for school children, indicating
errors. Where an American spreadsheet program
uses X and √ for cancel and accept, the same
program in Sweden could use √ and O. Better yet
would be a trash can and an enter arrow (down-left
arrow)

Other cultures may have prejudices against other
kinds of symbols; the most well-known of these
might be the international red cross, which uses a
red crescent in the Islamic parts of the world.

You should also make plenty of room in your dialogs;
do not assume you know where text goes in windows
and what width is needed to fit it in. Usually text will

not grow more than 20% when being translated
from English to Swedish or German, but in some
cases you simply have to expand text on two lines to
four or five lines. Leave lots of space in text fields;
similarly, make buttons wider than you would think
reasonable (80 pixels is a good minimum general
width) Do not put entire phrases in buttons.

If you design your own fonts, make sure to include
the entire character set in the font, not just A-Z and
0-9. Also make sure that you leave enough leading,
ascent and descent space in the font, the letter Å
should look like the letter A with a small ring above
it (not touching) and still not catch with the lower
parts of the letters p or g. (Note that the font this
paper is printed in, Palatino, does not follow these
conventions, which makes text in Swedish set in
Palatino hard to read.)

Next stop the World
When you start getting calls from Japan or Korea,
you know it’s time to start looking not only at the
International Utilities pages of Inside Macintosh, but
also at the Script Manager. Earlier, the Macintosh
could use only one script system at a time, selected
by which System file you booted with. With the
introduction of System 7.1, that is no longer true;
the user can switch scripts right in the middle of
doing something, and your application must be
prepared to handle that.

The first and most noticeable difference is scripts
that go from right to left. This throws out the normal
concept of “left justification” meaning text starts at
the left side of the screen; instead you have a
“system justification” replacing “left justification”
and a new kind of justification meaning “force left.”
Dialogs will have all check boxes and radio buttons
reversed, i e the text comes to the right of the
symbol, and they are right justified within the
bounding box of the control. For this reason, you
should design your dialogs so that all controls line
up both in the right and left edges.

7 Swedish to You is like Greek to Me

8 Swedish to You is like Greek to Me

How not to design a dialog

Why you shouldn’t (Swedish is not a right-to-left script, though)

8 Swedish to You is like Greek to Me

9 Swedish to You is like Greek to Me

This is how it should look

So you’ll have to design it like this

The second important difference is multi-byte
scripts. Since the number of glyphs is so large, one
byte is not enough to represent all glyphs; instead
two or more bytes are used to represent one glyph
or “letter.” The implications of this are that you no
longer can assume one byte == one letter. Instead,
you will have to call CharByte to determine whether
the byte you’re looking at is the first, middle, last or

only byte of a character. When doing so, make sure
that the current font and port are set accordingly.
You can view the script of some text to be just
another attribute such as font or style; indeed, the
font of a text determines its script.

9 Swedish to You is like Greek to Me

10 Swedish to You is like Greek to Me
When examining text, you can no longer use a
pointer to the text and pass a 0 for the “offset”
parameter many toolbox calls want; since the
meaning of bytes may change with context, you need
to point to the start of the text buffer (or other
known break point, such as right after a carriage
return) and supply the appropriate offset into the
text, else calls to the Script Manager will not work
correctly.

The script manager also has code for handling hit
detection, selections across script boundaries, and
other generally unpleasant artefacts of mixed
scripts; however, if at all possible, you should let
TextEdit do the dirty work for you. There are also
some commercial word-processing libraries on the
market handling multi-script text. The Word
Solutions Engine from DataPak software is one
example (the author is not affiliated with DataPak in
any other way than as a customer).

Collecting the Dough
So, are you ready to take on the world? Only your
users will know; when you move outside your own
experience area into foreign languages, you will
have to trust other people with adapting your
product to local conditions. The best way of knowing
that they do a good job, is letting them in on a share
of the profits from that market. However, since more
people are involved, there will be a lesser share for
you, which may tempt you to raise the price for the
localized version.

Don’t.

Users of today are generally price-conscious, and
while you may see the cost of the localization
process as something particular to that country, your
users will wonder why your software costs $800 at
their local shop, while they can buy it for $195,
shipping and handling included, mail-order from the
US. Then they’ll call you in the US, speaking French
and wonder why it doesn’t work correctly, and
you’re back at square one. Similarly, forcing the
localized version to run with a specific system
software language (like AutoDoubler) or keyboard
(like Quark XPress) generates much more bad
karma than good profits.

If that is the case, you’re probably better off not

localizing at all, but instead selling the US version
abroad, too — only, since you now use the Toolbox
for all critical tasks, chances are that the functions
that are important (sorting data, printing dates, etc.)
work for those users, as well, even if it’s called
something obscure such as “Paste Date” instead of
“Klistra in datum” in the edit menu.

One way to avoid the large price differences is to
recognize the benefits US customers get (after all,
there are lots of Mandarin writing or Spanish talking
persons living and working in the US) and spread
the price for the extra work needed to convert a
non-localizable application to a localizable one
evenly across all markets.

Tools
So how do you localize your software? Well, you
could conceivably have your localizers bash away at
your program with ResEdit; however, that is a less
than ideal solution. Apple has a tool called AppleGlot
which is ideally suited for translating resources; it
handles most resource types containing strings, and
lets you type in translations using any word
processor or text editor. You can build dictionaries of
translated strings to re-use for the next version, or
even for another application.

However, running AppleGlot requires your strings
and other localizable items to already reside in
resources; for an application with lots of hard-coded
string constants, getting there can be quite a feat.
Enter CStringExtractor, a simple utility (in itself not
localizable at all) which extract string literals from C
source code, and inserts calls to a string literal
handling library instead.

Usage is simple: Run the utility, enter a starting
resource ID, and select a folder containing C source
files. All C or pascal string literals will be replaced
with calls to the functions CLiteral() and PLiteral(),
and a source file will be created containing all the
extracted literals. Then run the string compiler
utility to collect all separated strings into a resource
file that you should include in your program.

NOTE: the string extractor makes some assumptions
about how strings are used in code, and will not
handle pre-processor symbols. You should only
attempt to do this on a copy of your source code.

10 Swedish to You is like Greek to Me

11 Swedish to You is like Greek to Me
Full source code is included, so you can make
whatever changes you need to the process. Please
send me a line if you find any bugs or make any
improvements.

11 Swedish to You is like Greek to Me

12 Swedish to You is like Greek to Me
The string extractor and compiler code is in itself
good examples of how not to write
internationalizable code; it assumes a one-byte
script.

What now?
If you’re developing for the Macintosh, I suggest you
read the Script Manager chapter of Inside Mac V. It
will give you a good idea of generally what level of
support is available. Then use that support. Don’t
assume dates are written YY-MM-DD, don’t assume
one byte == one character; don’t even assume
strcmp will do a good job. The toolbox may well be
more efficient, and it will do the job correctly.

If you’re a software designer, or user interface
designer, you need to take localization into account

at an early stage. Make provisions for easy
translation of menus and message strings. Don’t
assume that a certain message takes a certain finite
amount of memory; don’t assume it will fit in a tight
space on the screen. Don’t rely on a certain
graphical language or culturally specific way of
working. Design for flexibility.

Open your mind to foreign cultures. Who knows,
maybe it will happen that you possibly have to make
a two-week trip to Cannes to study European bea… I
mean ways of working.

I may be reached as h+@nada.kth.se if you’re
interested in discussing the contents of this paper, or
find errors or omissions in it.

12 Swedish to You is like Greek to Me

